- Forholdet mellem relative positioner og hastigheder
- Sådan ser et barn det fra en bevægelig bil
- Relativ hastighed mellem motorcyklen og bilen
- -Øvelse løst
- Øvelse 1
- Løsning
- Referencer
Den relative hastighed af et objekt er den, der måles i forhold til en given observatør, da en anden observatør kan opnå en anden måling. Hastighed afhænger altid af observatøren, der måler det.
Derfor er hastigheden af et objekt målt af en bestemt person den relative hastighed i forhold til det. En anden observatør kan opnå en anden værdi for hastigheden, selvom det er det samme objekt.
Figur 1. Skema, der repræsenterer punkt P i bevægelse, set fra referencesystemerne A og B. Kilde: egen uddybning.
Da to observatører A og B, der bevæger sig i forhold til hinanden, kan have forskellige målinger af et tredje bevægende objekt P, er det nødvendigt at kigge efter et forhold mellem positionerne og hastighederne for P set af A og B.
Fig. 1 viser to observatører A og B med deres respektive referencesystemer, hvorfra de måler positionen og hastigheden af objektet P.
Hver observatør A og B måler objektets P position og hastighed på et givet tidspunkt t. I klassisk (eller galilsk) relativitet er tiden for observatør A den samme som for observatøren B uanset deres relative hastighed.
Denne artikel handler om klassisk relativitet, der er gyldig og anvendelig i de fleste daglige situationer, hvor genstande har hastigheder meget langsommere end lyset.
Vi angiver observatør B's position med hensyn til A som r BA. Da position er en vektormængde, bruger vi fed til at indikere den. Positionen af objektet P med hensyn til A benævnes r PA og den af det samme objekt P med hensyn til B r PB.
Forholdet mellem relative positioner og hastigheder
Der er et vektorforhold mellem disse tre positioner, der kan udledes af repræsentationen i figur 1:
r PA = r PB + r BA
Hvis vi tager derivatet fra det forrige udtryk med hensyn til tid t, vil vi opnå forholdet mellem den relative hastighed for hver observatør:
V PA = V PB + V BA
I det forrige udtryk har vi den relative hastighed af P i forhold til A som en funktion af den relative hastighed af P i forhold til B og den relative hastighed af B i forhold til A.
Tilsvarende kan den relative hastighed af P i forhold til B skrives som en funktion af den relative hastighed af P i forhold til A og den relative hastighed af A i forhold til B.
V PB = V PA + V AB
Det skal bemærkes, at den relative hastighed af A i forhold til B er lig med og i modsætning til B's hastighed med hensyn til A:
V AB = - V BA
Sådan ser et barn det fra en bevægelig bil
En bil kører på en lige vej, der går fra vest til øst med en hastighed på 80 km / t, mens i modsat retning (og fra den anden bane) kommer en motorcykel med en hastighed på 100 km / t.
I bagsædet af bilen sidder et barn, der ønsker at kende den relative hastighed på en motorcykel, der nærmer sig ham. For at finde ud af svaret anvender barnet de forhold, som han lige har læst i det foregående afsnit, idet de identificerer hvert koordinatsystem på følgende måde:
-A er koordinatsystemet for en observatør på vejen, og hastighederne for hvert køretøj er blevet målt i forhold til det.
-B er bilen, og P er motorcyklen.
Hvis du vil beregne hastigheden på motorcykel P med hensyn til bil B, gælder følgende forhold:
V PB = V PA + V AB = V PA - V BA
Når vi tager den vest-østlige retning som positive, har vi:
V PB = (-100 km / t - 80 km / t) i = -180 km / t i
Dette resultat fortolkes som følger: motorcyklen bevæger sig i forhold til bilen med en hastighed på 180 km / t og i - i retning, det vil sige fra øst til vest.
Relativ hastighed mellem motorcyklen og bilen
Motorcyklen og bilen har krydset hinanden efter deres bane. Barnet i bagsædet af bilen ser motorcyklen bevæge sig væk og vil nu vide, hvor hurtigt det bevæger sig væk fra ham, under antagelse af, at både motorcyklen og bilen opretholder de samme hastigheder som før krydset.
For at kende svaret anvender barnet det samme forhold, der tidligere blev brugt:
V PB = V PA + V AB = V PA - V BA
V PB = -100 km / t i - 80 km / t i = -180 km / t i
Og nu bevæger cyklen sig væk fra bilen med den samme relative hastighed, som den nærmet sig, inden de krydsede.
Den samme motorcykel fra del 2 returneres, idet den opretholder sin samme hastighed på 100 km / t, men ændrer retningen. Med andre ord kører bilen (som fortsætter med en hastighed på 80 km / t) og motorcyklen i en positiv øst-vest retning.
På et tidspunkt passerer motorcyklen bilen, og barnet i bageste sæde af bilen vil vide den relative hastighed på motorcyklen med hensyn til ham, når han ser den passere forbi.
For at få svaret anvender barnet forholdene til relativ bevægelse igen:
V PB = V PA + V AB = V PA - V BA
V PB = +100 km / t i - 80 km / t i = 20 km / t i
Barnet fra bagsædet ser på motorcyklen, der vælter bilen med en hastighed på 20 km / t.
-Øvelse løst
Øvelse 1
En motorbåd krydser en flod, der er 600 m bred og strømmer fra nord til syd. Flodens hastighed er 3 m / s. Bådens hastighed i forhold til flodvandet er 4 m / s mod øst.
(i) Find bådens hastighed i forhold til flodbredden.
(ii) Angiv bådens hastighed og retning i forhold til land.
(iii) Beregn overgangstiden.
(iv) Hvor meget det vil være flyttet syd fra udgangspunktet.
Løsning
Figur 2. Båd, der krydser floden (øvelse 1). Kilde: self made.
Der er to referencesystemer: det solidariske referencesystem på flodbredden, som vi vil kalde 1, og referencesystemet 2, som er en observatør, der flyder på flodvandet. Formålet med studiet er båd B.
Bådens hastighed i forhold til floden er skrevet i vektorform som følger:
V B2 = 4 i m / s
Observatørens 2 hastighed (flåde på floden) med hensyn til observatør 1 (på land):
V 21 = -3 j m / s
Vi ønsker at finde bådens hastighed i forhold til land V B1.
V B1 = V B2 + V 21
Svar i
V B1 = (4 i - 3 j) m / s
Bådens hastighed er modulet til den foregående hastighed:
- V B1 - = (42 + (-3) 2) ½ = 5 m / s
Svar ii
Og adressen vil være:
θ = arctan (-¾) = -36,87º
Svar iii
Bådens krydsningstid er forholdet mellem bredden af floden og x-komponenten i bådens hastighed i forhold til land.
t = (600 m) / (4 m / s) = 150 sek
Svar iv
For at beregne drevet, som båden havde mod syd, skal du multiplicere y-komponenten i bådens hastighed med hensyn til land med krydstiden:
d = -3 j m / s * 150 s = -450 j m
Forskydningen mod syd i forhold til udgangspunktet er 450m.
Referencer
- Giancoli, D. Fysik. Principper med applikationer. 6. udgave. Prentice Hall. 80-90
- Resnick, R. (1999). Fysisk. Bind 1. Tredje udgave på spansk. Mexico. Compañía Editorial Continental SA de CV 100-120.
- Serway, R., Jewett, J. (2008). Fysik til videnskab og teknik. Bind 1. 7. Edition. Mexico. Cengage Learning Editors. 95-100.
- Wikipedia. Relativ hastighed. Gendannet fra: wikipedia.com
- Wikipedia. Relativ hastighedsmetode. Gendannet fra: wikipedia.com